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when the two conditions (3. 1) are violated, components of the echo signal image can
also be determined by formulas (2. 8) — (2. 10), with function B appearing in these de-
termined by formula B —122(1 — s sin~! 91 (3.3)
although the application of formula (3. 3) is justified only for considerable values of z
and sin 9.
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A new class of solutions of triple integral equations is proposed. A number of

boundary value problems of the elasticity theory with mixed boundary conditions
(problems of contact, cracks, etc.) can be reduced to this class,

1. Let us consider triple integral equations of the form

S(D(g JED)dE = Gy (z) 0<z<a) (LD
EPOE) () dE = F(x) (< <b)

\ @ (E) J, B dE = Gy () (<2< )

where functions G,, F, and G, are assumed known, (D is the unknown function, and
J, (x) is a Bessel function of the first kind.
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The most important results concerning the solution of the system of Egs. (1. 1) appear
in [1— 6].

Setting [6] 9 \2x
OEH=tE. /@=(5) F@ g@)=6@ (1.9

and using the Hankel operator o
Sual (@) = 2227\ " gnpa (at) / (1) dt

0

the triple equations (1. 1) may be written in the compact form

Sv /2~a,2a1p (.13) = f{fl«'), Sv;z,(ﬂp (33) = g(.?l) (1.3)
where
i) 0<z < a)
@)= k@) @<z <b) (1.4)

fa (@) (<7 <o)

Function g (x) can be similarly represented.

The triple equations (1. 1) (or (1.3)) can be reduced to a system of two integral equa-
tions or to one Fredholm's integral equation of the second kind. Papers [1, 3, 6] deal
with this question on the basis of Seddon's "trial” solution [7]

P (x) = Sy/9, -2k (2) (1. 5)

The solutions in [1, 3] were originally obtained without resorting to the Erdélyi-Kober
and Hankel operators which made them fairly cumbersome, To simplify the analysisthe
use of Hankel and Erdélyi-Kober operators was suggested in [7, 8). Solutions with the use
of these operators presented in [1, 3], appear in their compact form in [6].

The Erdélyi-Kober operators are defined as follows:

Zz_2°“2ﬂ &

Inaf (2) = —r—(aT“S (2 — ud)* M Wy du (o> 0) (1.6)
1)

x
:t-2 f—20—-1 d

In,af (x) P m HS (1:2 — uz)au2ﬂ+lf (u) du (—1< 2 O)
0

21 o
K, of () = ;‘:x_()_. S (u? — a:z)“"lu,'z“‘”“f @) du  (2>0) wn

o]
x

211 d & & B
Knaf () = — porrgy 2 ) (@0 — 270 ™Y @) (—1<3<0)

where I' (z) is the gamma function.

Seddon had shown [8, 9] that
Sata, BSﬂ,a = In, aspr Sﬂ,aSvH«a, g= Kn, a+f (1.8

2. A new class of solutions of the system of Eqgs. (1.3) can be obtained by setting
Y () = Sy /242, oM (D) 2.1
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instead of the trial solution (1. 5). Substituting (2. 1) into (1. 3), with the use of (1.8) we

obtain
Kv/z-a,afov Iv/%a,-aH=g (2.2)
Solution of these equations yields
H= Kv/2—a ofy H = Cl/m,_ag (2.3)

where I,;7% and K, ; are inverse operators, It is shown in [8, 9] that
1
I-n,a. == ]n+a,- ar K-n a = HBoppa, —a (2.9

Using the substitution (2. 1) we obtain solutions which to a certain extent are " parallel”
to those presented in [1, 3, 6]. As done by the authors of those papers, we set

6 =0, g —0 (2.5)

and shall, furthermore, assume that — 1 < & << 1.
1t follows from Egs. (2. 2) and (2. 3), and relationships (2. 5), that

Hy =0 (2.6)

Hy=(2) Kaayals + (§ ) Kshaaals
HB == ( Z ) I:}I'Ha,ngz
fs = ( o: ) K,joaafly, 8= ( Z )Iv/2+a,—aH2

f1 = ( Z )vaz-a,aHz + ( o; ) Kv!z—c:,aHs

where the letters in parentheses in front of operators represent the new integration limits.
In what follows it is expedient to use operators L and M which were introduced by

oMl ()R (D) et @ = = (528 Loaf@ e>a>0 @D

(5)Ena(y) Enal@ == (2 3 ) Mool @) @<a<s

Substituting in (2. 6) its fourth formula into the second and the fifth into the third, and
taking into account formulas (2. 4) and (2,7), we obtain the system of equations

sz(i) v/2—c: afs — (:r » )-‘!Wv}z-& oMy e<z<hy (2.8
Hy=— (3 ) Lsoally <o <o)

Cooke had shown [6] that ;
( ) naf( z) = M_ Pl (:1:2 __dz)—m&(dz-tz)“t““f (t) i@t

x: 12
@>d>1>e)
. ! % s
(2 1) Moo () = 20T omsazge O e i U

1% 22

e

(rld e )
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It will be seen from these formulas that (2. 8) is a system of integral equations, By sol-
ving (2.8) we can determine functions H,(z) and H4(z) , while (2. 6) implies that
H,(x) = 0. Function H (x) is thus determined, since its representation is similar to
(1. 4).

Finally, using formulas (2. 1) it is possible to determine function ¢ (z), i.e. to obtain
the solution of the system of treble integral equations (1.3) and, consequently, also that
of the input system (1. 1), Most frequently it is not function ¢ () but functions f, (z),
fs () and g, (z) that are required. The latter can be obtained by using the last three
formulas of (2. 6).

Substituting in (2. 8) the second of its formulas into the first, we obtain for function
H, (x) the integral equation of the second kind ,

2 \2
= —\= 2.9
hene Hy @)= ¢ @ — (=) § K (2, ) Ha (v) dy (2.9
b
9@ =(,)K 1ol (2.10
— ain? xvy1+v+21 o0 p1-2v-2a (2 _bz)za
K (2, y) = sin® an T Cr— § EaE—g

(—Ya<<a <)
Function ¢ (x) can be similarly determined with the use of (1.7).
We have, thus, derived solutions that are parallel to those obtained in [1, 3, 6].
Thus, for example, in the particular case of v == U and o —! /, formulas (2. 10)
assume the form

b
) 2 d{ ulfy(u)du (2.11)
x) = — i — ’
q) ( ) nl‘ 1y drx (“f_) ___1_2)'/2

X

¥

2 (b2 — a)'l (52— ) (e — )
(b:l__:,/‘.’l b4y [ — [)TI)

n — In
" b—wu x b—ux

’

K (L y) ==

8, To show the difference between the solution (based on the substitution (2. 1)) ob-
tained here and that of Cooke (based on Seddon's substitution (1.5)) in [1, 6], we consider,
as an example, the problem of pressing a ring-shaped punch with a flat base into an elas-
tic half-space. The punch is subjected to a vertical force £ acting along its axis of
symmetry, It is assumed that outside of the punch the half-space surface is free from
stress and that friction between the punch and the half-space is absent. In such case
v = and a = Y, ,and furthermore

ar(nN =10, gn=0, f(()=—=2p81—wvy)r 3.1
g (r) =, (r, 0 for a<r<b

where 1 is the shear modulus, v, is the Poisson ratio of the half-space material, ¢ is
the depth -of punch impression, and a and 6 are the inner and outer diameters of the
punch, respectively.

The solution based on the substitution (2. 1) leads in this case, after suitable transfor-
mations, to the following equations:
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TP d {— 2 /s
oW 0=—2r 5 | (Frty) voa e<r<n @)

1
1;x2 Y@ =1— (%)QSKG (@, ¥ ¥ () dy
&

. 1 {—y? 44 14— 1
K, @ 9) =35 ( y +y x -i—x)

y Ty x Rl

1
a _ P{l—w
E::.T, ’Yal:%'lp(y)dy, O:Ta-—T}LE-—gl
£
where o, (-, U) is the normal stress in a small area of contact, Formulas (2. 6), (2. 9),
(2. 11) and (3. 1) were used for deriving Egs. (3. 2).
The solution of the same problem based on Seddon's substitution (1. 5) and results ob-
tained by Cooke [1, 6] yield equations [10]

1
TP d yr—et |\
5, 0) = 5 7 % (;‘z—:r—z/"ga') nWdy (a<r<b) (3.9)
r/b
2 2 2 2¢
2= w=1—(Z) (£,@0nwaw
€
1 22—e?  x4e YP—e y-i-e
Kb(x,y)zg(xz,.yz)( x Ye—e Ty In y—~8)

1
P (1 —wvy)
wr=\nea. S=1, 5
€

It can be readily shown that Ya = vy = v.
The following conclusions can be drawn from the analysis and comparison of formulas
(3. 2) and (3. 3).

a) The solution of the problem is completely determined by formulas (3. 2) or(3.3).

b) Formulas (3. 2) make it possible to obtain the asymptotic representation for
o, (r, 0) when r — a - U, i.e. when approaching the punch inner contour, while formu-
las (3. 3) yield that stress for r — b — 0, i.e. when approaching the punch outer contour
(for further details of this see [11]). Thus solutions (3. 2) and (3. 3) are in a way comple~
mentary.

c) The kemel K, (z, y) of Fredholm's integral equation of the second kind is in-
dependent of parameter € = a/ b, which may facilitate computations (and simplify
computer programing), when the problem is to be solved for various values of &. In solu-
tion (3.3) the kemel K, (z, y) depends on &.

d) When & = 0 the solutions of integral equations (3. 2) and (3. 3) are of the form

x 14
P () = T A— " ln 1_2 . M@ =1 (3.4)

Solutions of integral equations (3. 2) and (3. 3) were derived for & #= 0 by numerical
methods. The integrals in these equations were replaced by Gauss' quadrature formula
{the number of nodes was nearly 40). The system of linear algebraic equations obtained
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in this way was solved on a computer. The computation results (for & = 0) and formu-
las (3. 4) (for € = 0) were used for plotting the curves of functions { (z) and 1 () for
several values of €. These curves are represented in Fig, 1 by solid and dash lines, res-
pectively. It is seen that the curves of function v (z) related to different values of &
differ considerably between themselves, while for (0<Ce < 0.5) the curves of P (z) are
virtually the same. This property may be used for the derivation of approximate solu-
tions for & < 0.5. In the considered case the substitution of the expression for ¢ (z) from
(3.4) into the first formula in (3. 2) yields the approximate formula for computing the

normal stress at the small area of contact between the ring-shaped punch and the half-
space (for & < 0.9).
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Fig. 1

4, Finally, we shall show how solutions (1. 5) and (2. 1) can be obtained.
We seek the solution of Egs. (1. 3) of the form

Y = Sp,+E
Two cases are possible here.
1°. Equations (1.3) may be reduced to the form

IP-;, )\(g - .f, K}Lg‘)\:g == g

These equations occur when
Sv/2—a,2aSBYY = [}}.l,)\l, SV /2’0SB.Y = sz, . (4.1)
Using (1. 8) and (4. 1) we obtain the relationships

Pty =v/2—a m =B & =2a-+7y
B=v/2 py=v/2, & =7
which yield
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(3::‘\7/2,'?:_“’ P'1=V/29 [1.22\’/2, }uI:G,M————-a

Hence in this case § = S,p, «&, i.e. we have Sneddon’s solution (1, 5).
2°, Equations {1.3) can be reduced to the form

Kua =71 IurE=2¢

Further computations are carried out by the same plan as in the first case. As the re-
sult we have

B=v/2+40 v=—0 U =v/2—a, gy =v/2+q,
7\,3':@, 7\14:““

In this case Y = S8y 44 -5, i.€. we obtain solution (2, 1).
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